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1. Introduction

Supergravity theories provide a useful playground for probing string theory physics (see

e.g. [1] and references therein), since they are on the one hand a limit of string theory, but

on the other hand they are classical field theories, admitting a more simpler analysis than

string theory.

The scenario of dimensional reduction provides us with a setting in which an effective

four dimensional theory can be obtained from the ten dimensional supergravity theories,

therefore bringing four dimensional physics in contact with string theory. The scalars in

supergravity theories often parameterize cosets G/K where K is the maximal compact

subgroup of the global symmetry group G. This paper is about the cosets G/K. The

global symmetry group G is related to the U-duality group, which contains the S- and

T-duality of string theories [2 – 4].

In maximal supergravities it was shown [5, 6] that in a circle by circle reduction all

scalars appeared in upper-triangular matrices parameterizing the solvable positive root
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subalgebra of the global symmetry group. Recognizing the group G is greatly facilitated

by the fact that the Lie algebra in these reductions of maximal supergravities is a split real

form, because then all dilaton coupling vectors can be identified with positive roots and a

Dynkin diagram can be drawn.

For non-maximal supergravities the Lie algebra of the global symmetry group can be

a non-split real form. In this paper we will address the question of how to recognize the

global symmetry group parameterized by the scalars in the case where the Lie algebra is not

a split real form. We find that the identification of roots is replaced by the identification of

restricted roots and that the Dynkin diagram is that of the restricted root system. Together

with the multiplicities of the restricted roots this fixes uniquely the global symmetry group.

Theories where scalars parameterize cosets G/K where G is a non-split real form have been

studied before, see e.g. [7, 8], but in this work the groups G and K were known beforehand.

We present a technique to find the groups G and K in theories obtained from a dimensional

reduction.

In this paper we will focus on the dimensional reduction of Heterotic supergravity as a

relevant example where non-split real forms arise. The result is known [9 – 11] but in this

paper we present a method which can be used for any supergravity theory and which gives

more insight in how the cosets appear in supergravity theories.

The paper is organized as follows; in section 2 we perform the dimensional reduction

of Heterotic supergravity to outline the method of dimensional reduction. In section 3 we

show the relation between restricted roots and scalar coset Lagrangians; appendix A is a

quick reference for Lie algebraic concepts and explains our notational conventions on Lie

algebras. In section 4 we analyze the reduction of the higher dimensional symmetries of

Heterotic supergravity and show that they give the same symmetry group as obtained by

the method of section 3. In section 5 we discuss the concept of a maximal scalar manifold

and show for Heterotic supergravities how field dualizations give symmetry enhancements.

In section 6 we draw some conclusions.

2. The dimensional reduction method

The method of dimensional reduction used in this paper is similar to that of [5, 6]. Actually

a Kaluza-Klein circle by circle reduction is performed; the total number of circles reduced

upon is called d and the dimension of the field theory is D = 10 − d. Since the global

symmetry group manifests itself already on the bosons in the theory and since the Kaluza-

Klein procedure does not break supersymmetry, we will only be concerned with the bosonic

field content. The fields are: the metric gµν , the Yang-Mills field Aµ in some representation

of either E8 × E8 or SO(32), the dilaton Φ0 and the Kalb-Ramond gauge potentials Bµν .

As usual we will restrict ourselves to the abelian subalgebra of the Yang-Mills sector and

therefore only 16 gauge bosons remain, but we will not restrict ourselves to this number

16 and just assume the existence of N abelian gauge bosons.

The action can be written in Einstein frame as

S =

∫

M10

d10 x e

(

R − 1

2
(∂Φ0)

2 − 1

12
e−Φ0H2 − 1

4
e−

1
2Φ0

16∑

I=1

F I
µνF Iµν

)

, (2.1)
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where e = det(ea
µ) and F I = dAI . The field strength H contains the Yang-Mills Chern-

Simons term: H = dB − ∑N
I=1

1
2AI ∧ F I .

2.1 Reduction over one circle

To obtain the (10 − d)-dimensional theory, we reduce d times over a circle. In going from

D + 1 to D dimensions we write

ds2
D+1 = e2αϕds2

D + e−2α(D−2)ϕ(dz + Vµdxµ)2, (2.2)

where the number α is given by

α =

√

1

2(D − 1)(D − 2)
≡ 1

2
s, (2.3)

and where z is the coordinate over the circle. All fields are independent of z. The Kaluza-

Klein vector is denoted by Vµ and reducing over more then one dimension will result in

a set of Kaluza-Klein vectors V i
µ. To obtain the action we use the following rules for the

dimensional reduction of the Ricci scalar and an n + 1-form field strength Fn+1 at every

step in going from D + 1 to D dimensions:

√

−ĝR̂ =
√−g

(

R − 1

2
(∂ϕ)2 − 1

4
e−(D−1)sϕF (V )2

)

(2.4a)

1

2(n + 1)!

√

−ĝF̂ 2
(n+1) =

1

2(n + 1)!

√−gF 2
(n+1)e

−nsϕ +
√−g

1

2n!
F 2

(n)e
(D−n−1)sϕ. (2.4b)

This is enough to determine the action in any dimension D. The fields descending from

the ten dimensional metric are: the metric gµν , the dilatons ϕi, the Kaluza-Klein vectors

V i
µ and the axions, which actually descend from the Kaluza-Klein vectors, Aij and are thus

defined only for i < j. The ten dimensional Kalb-Ramond gauge potential gives rise to a

two-form Bµν , vectors Bµi and scalars Bij . The ten dimensional Yang-Mills field gives rise

to a Yang-Mills vector AI
µ and scalars AI

i .

2.2 Reduction over d circles

The circle by circle reduction from 10 to D dimensions can be seen as a dimensional

reduction over a d-torus with the following metric Ansatz:

ds2
10 = e

1
2
~g·~ϕds2

D +

d∑

i=1

e2~γi·~ϕ(hi)2, d + D = 10, (2.5)

where the toroidal coordinates are denoted zi and

~ϕ = (ϕ1, . . . , ϕd), ~g = 2(s1, s2, . . . , sd), (2.6a)

~γi =
1

4
~g − 1

2
~fi, ~fi = (0, . . . , 0

︸ ︷︷ ︸

i−1

, (9 − i)si, si+1, . . . , sd), (2.6b)

hi = dzi + V i
µdxµ +

∑

i<j≤n

Aijdzj . (2.6c)
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Equation 2.6c can be inverted to give

dzi = Γij(h
j − V j) (2.7)

where

Γij =





∞∑

p=0

(−A)p





ij

= δij − Aij + AimAmj − . . . , (2.8)

and it should be noted that due to fact that Aij is only defined for i < j the matrix

(A)ij = Aij is upper-triangular and hence the series for Γij is finite. Using a hat for generic

higher dimensional fields and the coordinate split x̂ = (xµ, zi) the Kaluza-Klein Ansatz for

the Yang-Mills gauge potential is

ÂI(x̂) = AI
µ(x)dxµ + AI

i (x)dzi = AI + AI
i dzi, (2.9)

and hence 1

F̂ I = dAI + dAI
i dzi = F I + F I

i hi (2.10a)

F I
i = (dAI

m)Γmi (2.10b)

F I = dAI − F I
i V i. (2.10c)

For the Kalb-Ramond field we proceed analogously by expanding the two-form field as

B̂ = B + Bidzi +
1

2
Bijdzidzj , (2.11)

and then calculating dB̂ and expressing this in the hi-basis. By incorporating the Chern-

Simons terms in a similar fashion one obtains 2

Ĥ = H + Hih
i +

1

2
Hijh

ihj , (2.12a)

H = dB − (dBi)ΓijV
j +

1

2
(dBij)ΓimΓjnV mV n − 1

2
(AI − AI

i ΓijV
j)F I , (2.12b)

Hn = (dBi)Γin − (dBij)ΓimΓjnV m − 1

2
(AI − AI

i ΓijV
j)F I

n − 1

2
AI

nF I , (2.12c)

Hmn = (dBij)ΓimΓjn +
1

2

(
AI

pΓpmF I
n − AI

pΓpnF I
m

)
. (2.12d)

In a analogous way one obtains for the Kaluza-Klein field strengths:

F̂ i = F i + Fijh
j , (2.13a)

Fij = (dAim)Γmj , (2.13b)

F i = dV i − (dAim)ΓmnV n = dV i − FijV
j . (2.13c)

The dilatons from the reduction ϕi have the usual field strengths dϕi. In writing down the

action it is convenient to put all dilatons, both from the reduction and the ten dimensional

1The wedge symbols ∧ will be omitted where possible.
2Any repeated index, whether in an up-down combination or not, is summed over unless otherwise

specified.
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dilaton, into a d+1-component vector, and hence all dilaton couplings into d+1-component

‘coupling vectors’. The useful definitions are

~Φ = (Φ0, ϕ1, . . . , ϕd) = (Φ0, ~ϕ), ~Fi = (0, ~fi),
~Bij = −~Fi + ~Fj , ~G = (1, ~g),
~Ai = ~Fi − ~G, ~Bi = −~Fi,
~Aij = ~Fi + ~Fj − ~G, ~A = − ~G,

Ci = ~Fi − 1
2
~G,

(2.14)

of which some summation relations can be deduced

~Aij + ~Bik = ~Aki, ~Aij + ~Bjk = ~Aik, (2.15a)

~Ci + ~Cj = ~Aij, ~Cj = ~Bij + ~Ci, i < j, (2.15b)

and some inner product relations

~G · ~G =
8

D − 2
, ~Fi · ~Fj = 2δij +

2

D − 2
, (2.16a)

~Fi · ~G =
4

D − 2
, ~Ai · ~G = − 4

D − 2
, (2.16b)

~Aij · ~G = 0, ~Bij · ~Bkl = 2δik − 2δil − 2δjk + 2δjl, (2.16c)

~Aij · ~Bkl = −2δik + 2δil − 2δjk + 2δjl, (2.16d)

~Ci · ~Cj = 2δij . (2.16e)

The D-dimensional Lagrangian can be written as

L = L1 + L2 + L3, (2.17a)

e−1L1 = R − 1

2
∂µ

~Φ · ∂µ~Φ − 1

2

∑

1≤i<j≤d

(Fij)
2e

~Bij ·~Φ − 1

4

d∑

i=1

(Fi)
2e

~Bi·~Φ (2.17b)

e−1L2 = − 1

12
e

~A·~ΦH2 − 1

4

d∑

i=1

e
~Ai·~Φ(H i)2 − 1

2

∑

1≤i<j≤d

e
~Aij ·~Φ(Hij)

2 (2.17c)

e−1L3 = −1

4
e−

1
2

~G·~Φ
N∑

I=1

(F I)2 − 1

2

d∑

i=1

N∑

I=1

e
~Ci·~Φ(F I

i )2. (2.17d)

3. The algebra from the reduction

3.1 Restricted roots and coset Lagrangians

In this section we will set out the method for identifying the global symmetry group G of the

coset G/K which is parameterized by the scalars emanating from a dimensional reduction.

A summary of some Lie group theoretical aspects is in appendix A. Every semi-simple real

Lie algebra g of a Lie group G can be decomposed in a compact subalgebra k, a maximal

abelian subalgebra a and a nilpotent subalgebra n. This decomposition g = k⊕ a⊕n is the
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Iwasawa decomposition. The orthogonal component of g with respect to the Cartan-Killing

form B(x, y) to k is denoted p and we have

[k k] ⊂ k, [k p] ⊂ p, [p p] ⊂ k. (3.1)

If K is a maximal compact subgroup of the Lie group G with Lie algebra k, then we can

describe the coset G/K by exp(a ⊕ n)3. The scalar manifolds appearing in supergravities

are in general Riemannian globally symmetric spaces and can be described by cosets of

the form G/K, where K is the maximal compact subgroup of a semi-simple real Lie group

G. These cosets G/K are classified (see e.g. [12]). The classification says which maximal

compact subalgebras k can be found in a real semi-simple Lie algebra g and thus which real

forms g a complex Lie algebra g′ ∼= g
�

can have. With respect to the subalgebra a the Lie

algebra g can be decomposed into restricted root spaces gλ:

g = g0 ⊕
⊕

λ∈Σ

gλ, [Hxλ] = λ(H)xλ,∀H ∈ a, xλ ∈ gλ, (3.2)

where Σ is the set of (nonzero) restricted roots. This decomposition is analogous to the

root decomposition with respect to the Cartan subalgebra h
�

of the complexified algebra

g
�

, but since the real numbers do not form a closed field, a
�

can not be identified with h
�

,

but only with a subalgebra of the latter. Hence the name restricted root. The restricted

roots are linear real functionals on a and form a root system [12], which can in fact be non-

reduced, i.e. if λ ∈ Σ then the only multiples of λ that can also be in Σ are ±λ,±2λ,±1
2λ

(but if λ, 2λ ∈ Σ then 1
2λ /∈ Σ). Another major deviation from the ordinary roots is that the

dimension of the restricted root spaces can exceed 1: mλ ≡ dim gλ ≥ 1. As with ordinary

roots a set of simple restricted roots can be defined and a Dynkin diagram can be drawn.

The number of simple restricted roots is called the rank and it equals the dimension of a.

The multiplicities mλi
and m2λi

= dim g2λi
of the simple restricted roots λi together with

the restricted root diagram uniquely fix the real form g of a complex Lie algebra g′ ∼= g
�

and hence they fix the coset G/K. In appendix D we list for all real non-compact forms

the restricted root diagram, the multiplicities of the simple restricted roots and the Satake

diagram (see appendix A for some explanation).

As seen in the previous section, a circle by circle dimensional reduction reveals the

dilaton coupling vectors and these we will identify with the set of positive restricted roots

Σ+. The multiplicities are easily determined; they are just the number of times a dilaton

coupling with that restricted root occurs. A restricted root Dynkin diagram can readily be

drawn and thus the corresponding coset can be read off from the tables in appendix D. It

only needs a proof that the scalars in the Lagrangian really make up a coset Lagrangian.

Therefore in the remainder of this section we will sketch some aspects of coset Lagrangians

(see also [7 – 9]).

The nilpotent subalgebra n is actually the subalgebra

n =
⊕

λ∈Σ+

gλ. (3.3)

3Of course only the identity component of G/K is parameterized in this way.
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Let us introduce a basis {H1, . . . ,Hl} for a, where l = dim a is the rank of the real form

g and let us fix a basis for n by the elements EI
λ, where for fixed λ ∈ Σ+ the index I runs

from 1 to mλ. The coset G/K can than be described by scalars φi, called dilatons, and by

scalars AI
λ, called axions, through V = V1V2 which is an element of G and where

V1 = exp
1

2

l∑

i=1

φiHi, V2 = exp
∑

λ∈Σ+

mλ∑

I=1

AI
λEI

λ. (3.4)

As we will see later it is sometimes more convenient to parameterize V2 slightly differently.

We arrange the dilatons φi in a vector ~φ and similar for Hi. For the restricted roots we

define ~λ as the vector with components λi = λ(Hi). From V we can compute the Lie

algebra valued one-form4

dVV−1 =
1

2
d~φ · ~H +

∑

λ∈Σ+

mλ∑

I=1

e
~λ·~φF I

λEI
λ. (3.5)

With every real form g goes a Cartan involution θ (see appendix A but also [12, 13])

which is + id on the compact subalgebra k. This Cartan involution is used to define a

generalized transpose # in the (identity component of the) real group G as follows: if

O ∈ G and O = exp x for some x ∈ g, then O# = exp−θ(x). In fact if U ∈ K ⊂ G, then

we have U# = U−1, which clarifies the name generalized transpose, since for SO(n) 3 O

we have O−1 = OT . A general scalar coset action is of the form

SG/K =
1

8

∫

dDx eTr
(
∂M∂M−1

)
. (3.6)

where the trace is in some representation and M = V#V. Though M is in a representation

of the group, the trace in the action is actually in a Lie algebra representation and using

that θ is an automorphism one can show that the action can be written as:

SG/K = −1

4

∫

dDxe
(

Tr(∂VV−1∂VV−1) + Tr(∂VV−1(∂VV−1)#)
)

= −1

2

∫

dDxeTr(∂VV−1�∂VV−1),

(3.7)

where � : g → g denotes the projection operator defined by

� : x 7→ 1

2
(�− θ)x. (3.8)

Hence � is the identity on the non-compact part and zero on the compact part; it projects

out the compact part. This is quite general for scalar coset Lagrangians; one starts with a

representative V of the group G parameterized by scalars and writes

dV V −1 = Q + P, Q ∈ k, P ∈ p. (3.9)

4In deriving these formula one uses the Baker-Campbell-Hausdorff formulae, which can be found in

appendix C.
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Under a global G transformation V 7→ V M, M ∈ G the forms Q and P are invariant.

From the relations 3.1 one finds that under a transformation V 7→ OV, O ∈ K we have

Q 7→ dOO−1 + OQO−1, P 7→ OPO−1, (3.10)

and thus Q is like a gauge field and P transforms covariant. Hence we can form the

Lagrangian

LG/K = −1

2
Tr(PµPµ), (3.11)

which is precisely the same is

−1

2
Tr(�dV V −1�dV V −1) = −1

2
Tr(dV V −1�dV V −1), (3.12)

where the latter equality follows from Tr(xy) ∼ Trad(ad x ad y) = 0, ∀x ∈ k, y ∈ p.

Another approach for coset Lagrangian is to start with the Lagrangian

L′
G/K = −1

2
Tr(DµV V −1DµV V −1), (3.13)

where the covariant derivative D contains a gauge field Aµ taking values in k and appears

algebraically in the action. The gauge field can be eliminated by its equation of motion

Tr(AµDµV V −1) = 0, which precisely means that DµV V −1 ∈ p. Hence the gauge field

cancels the compact part in ∂µV V −1 giving thus the same Lagrangian: LG/K = L′
G/K .

If the scalar sector in the Lagrangian obtained by dimensional reduction matches the

action 3.7 for the appropriate G/K, then indeed the scalars from the reduction parameterize

the coset G/K. In the following section we will pursue this programme for the dimensionally

reduced Heterotic supergravity.

3.2 Identifying restricted roots in the Lagrangian

The restricted roots are easily read off from the Lagrangian 2.17a to be ~Bij, ~Aij and ~Ci

with multiplicities m( ~Bij) = m( ~Aij) = 1 and m( ~Ci) = N , while m(2~Ci) = 0. The simple

restricted roots can be identified as follows: λd−i ↔ ~Bi,i+1 and λd ↔ ~C1 and hence the rank

of the coset is d. The dilaton coupling vectors are d+1 dimensional so one direction in this

vector space should be redundant. In fact in [10] it is shown that indeed for d < 6 one can

split of one component of the dilaton. We will take another approach; since it is known that

in four dimensions the global symmetry group can be enlarged to an SL(2; R)×SO(6, 6+N)

we will embed the symmetry group already in the larger group SL(2; R) × SO(d,d + N)

which has rank d + 1. It is easy to see that the inner product in the restricted root space

is proportional to the inner product of the dilaton coupling vectors and thus the restricted

root Dynkin diagram is

λ1 λ2 λd−1 λd

and taking into account the multiplicities one can read off that the coset should be of the

type BI or DI. This implies G = SO(d,d + N), since the rank equals l for both cases and

N = 2(r − l) if N + 2d is even (type DI ) and N = 2(r − l) + 1 if N + 2d is odd (type BI ).

– 8 –
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The rest of this section will thus be devoted to prove that indeed the scalar part of

the Lagrangian 2.17a is an SO(d,d + N)/SO(d) × SO(d + N) coset Lagrangian. Some

aspects of the explicit representations come in handy at this point. With every restricted

root we can identify as many generators as the multiplicity and also we assemble d+1 non-

compact5 Cartan generators Ha, 0 ≤ a ≤ d in a vector where the sl(2; R) Cartan generator

is embedded as a linear combination. We therefore make the following identification:

~Bij ↔ Eij , i < j, [ ~HEij ] = ~BijEij, (3.14a)

~Aij ↔ Rij = −Rji, [ ~HRij ] = ~AijRij , (3.14b)

~Ci ↔ YiI , 1 ≤ I ≤ N, [ ~HYiI ] = ~CiYiI . (3.14c)

The summation rules suggest that we take

[EijEkl] ∼ δjkEil − δilEkj, [EijRkl] ∼ δikRjl − δilRjk,

[EijYkK ] ∼ δikYjK, [YiIYjJ ] ∼ MIJRij ,

[YiIRkl] = 0, [RijRkl] = 0,

(3.15)

where MIJ is an unknown matrix. Working out the Jacobi equations fixes the propor-

tionality constants but not MIJ , since this is related to a choice of basis in the subspace

spanned by the YiI . Using the vector representation with the basis as in appendix B and

working out the commutation relations gives MIJ = δIJ . Hence we have:

[EijEkl] = δjkEil − δilEkj, [EijRkl] = −δikRjl + δilRjk,

[EijYkK ] = −δikYjK, [YiIYjJ ] = δIJRij ,

[YiIRkl] = 0, [RijRkl] = 0.

(3.16)

The embedding in SL(2; R)×SO(d,d+N) is done by embedding the vector representation

(2d + N)× (2d + N) matrices X (see appendix B) of the positive restricted root vectors of

so(d,d + N) into (2 + 2d + N) × (2 + 2d + N) matrices as follows

X ↪→
(

02×2 02×(2d+N)

0(2d+N)×2 X

)

, (3.17)

and the Cartan generators are diagonal in this basis where the upper left block is propor-

tional to the third Pauli matrix. We introduce for convenience the vector ~C0 = 1
2

√
D − 2~G

to get

~Ca · ~Cb = 2δab, 0 ≤ a, b ≤ d;

d∑

a=0

(~Ca)m(~Ca)n = 2δmn. (3.18)

Inspection of the commutation relations 3.16 and using the explicit vector representation

we see that the Cartan generators Ha are diagonal with diagonal values

Ha = diag((Ha)0,−(Ha)0, (Ha)1, . . . , (Ha)d,−(Ha)1, . . . ,−(Ha)d, 0, . . . , 0
︸ ︷︷ ︸

N times

),

(Hm)a = (− ~Ca)m, 1 ≤ a,m ≤ d.

(3.19)

5As much as is possible we will omit the subjective non-compact; a Cartan generator in this context is

an element of a.
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This implies that in the vector representation the traces are

Tr(HaHb) = 2

d∑

c=0

(~Cc)a(~Cc)b = 4δab,

Tr(EijE
T
kl) = 2δikδjl,

Tr(RijR
T
mn) = 2δimδjn,

(3.20)

and the others are zero. The traces in two different representations of a simple Lie algebra

are proportional and thus for a semi-simple Lie algebra of two simple factors, there are

two proportionality constants since both factors can be weighted differently. In our case

we have fixed ~C0 and therefore we have fixed one more constant and this choice gives the

right coset Lagrangian. The coset Lagrangian can be constructed using

V1 = exp

(
1

2
~Φ · ~H

)

, (3.21a)

V2 = · · ·U24U23 · · ·U14U13U12, Uij = exp (AijEij) no sum, (3.21b)

V3 = exp




∑

i<j

BijRij



 (3.21c)

Ω = exp (ω) , ω =
∑

iI

AiIYiI , (3.21d)

V = V1V2V3Ω, (3.21e)

where Aij , Bij and AiI are the axions and ~Φ are the dilatons. Using some tricks as explained

in appendix C one finds:

dV1V1
−1 =

1

2
d~Φ · ~H, (3.22a)

V1dV2V2
−1V1

−1 =
∑

i<j

Fije
1
2
~Φ· ~BijEij , (3.22b)

V1V2dV3V3
−1V2

−1V1
−1 =

∑

i<j

e
1
2

~Aij ·~ΦdBmnΓmiΓnj, (3.22c)

V1V2V3dΩΩ−1 (V1V2V3)
−1 =

∑

Ii

e
1
2

~CiI ·~ΦF I
i YIi +

1

2

∑

i,j

e
1
2

~Aij ·~ΦAI
mΓmiF

I
j Rij . (3.22d)

Using that the action of θ in the vector representation becomes θ(x) = −xT and using

the properties of the traces one then indeed finds that the coset construction based on

the commutation rules of the restricted root generators of so(d,d + N) indeed gives the

coset scalar Lagrangian as it appears in the action 2.17a. Though we embedded the global

symmetry group into SL(2; R) × SO(d,d + N), SL(2; R) is not a part of the symmetry

group if D > 4. This can be seen from the fact that there is no restricted root for SL(2; R).

This will change when the two-form can be dualized to a scalar; this can be done in four

dimensions.

– 10 –



J
H
E
P
0
2
(
2
0
0
6
)
0
0
4

4. Analysis of dimensionally reduced symmetries

The fields appearing in the Lagrangian 2.17a do not all have the ‘right’ transformation

properties, e.g. the Kaluza-Klein U(1)-gauge transformation also acts on other fields than

the Kaluza-Klein vectors. The fields are not ‘diagonalized’ with respect to the symmetry

transformations, but a field redefinition can achieve this. An alternative but equivalent

approach is to slightly modify the reduction Ansatz in such a way that the difference

between world and tangent indices is respected. Let us split up the world indices according

to µ̂ → (µ, α) and the tangent space indices according to â → (a, i) and if more then one

index of a kind is needed, the order of the alphabet will be used. The modification of the

reduction Ansatz for the metric amounts to

hi → Oi
α(dzα + V α

µ dxµ), Oi
α = δi

α + Ai
α, (4.1)

where Ai
α are the axions with the distinction between flat and curved index expressed

by using a different kind of letter. The metric Ansatz can now be written in terms of

vielbeins by

êµ
ae

1
4
~g·~ϕeµ

a, êµ
i = e~γi·~ϕOi

αV α
µ ,

êα
i = e~γi·~ϕOi

α, êµ
i = 0.

(4.2)

The Ansatz of the fields will now be made in a tangent space basis (see e.g. [11, 14]). So

for the Kalb-Ramond field we write:

B̂ =
1

2
Babe

aeb + Baαeafα +
1

2
Bαβfαfβ, fα ≡ dzα + V α

µ dxµ, (4.3)

and for all other fields similar. Note that we still take Ai
α to be upper triangular. The

most general diffeomorphism in ten dimensions compatible with the field Ansätze is

δxµ = −ξµ(x), δzα = Λα
βzβ + ξα(x), (4.4)

where Λα
β is a constant matrix, hence a member of gl(d; R) ∼ R + sl(d; R) and from the

discussion in [5] we know that R-factor will combine with the higher dimensional scaling

symmetry to an internal abelian symmetry. We will not be concerned with this symmetry.

The ξµ-transformations give rise to lower dimensional general coordinate transformation,

while the ξα-transformations act only on the Kaluza-Klein vectors V α
µ , which transform un-

der this transformation as U(1)-connections. Any field of the form Cµ1...µpα1...αq transforms

as a q-tensor under the sl(d; R)-transformations:

δCµ1...µpα1...αq = Cµ1...µpβα2...αq
Λβ

α1 + other terms with α1 ↔ αi. (4.5)

The Kaluza-Klein vector transforms under sl(d; R) as

δΛV α
µ = −Λα

βV β
µ . (4.6)

The Kalb-Ramond transformations act on the two-form field as δB̂ = dΛ̂(1), and the only

transformation consistent with the reduction Ansatz acting on the scalar component of the

two-form is

δmB̂αβ = δmBαβ = mαβ, (4.7)
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where mαβ is a constant anti-symmetric matrix. Consistent with the reduction Ansatz the

scalars of the Yang-Mills vectors transform under a ten dimensional Yang-Mills transfor-

mation as

δqÂ
I
α = δqA

I
α = qI

α, (4.8)

where the parameters qI
α are constants. To make the field strength Ĥ = dB̂ − 1

2ÂI F̂ I

invariant the Kalb-Ramond field must also transform and the scalar part of the Kalb-

Ramond field must transform as

δqBαβ = −qI
[αAI

β]. (4.9)

Calculating commutators of these transformations acting on the scalars we get

[δm1 , δm2 ] = 0, [δq, δm] = 0,

[δΛ1 , δΛ2 ] = δΛ3 , [δΛ, δq] = −δq′ ,

[δq1, δq2 ] = δm3 , [δΛ, δm] = δm′ ,

Λ3
α

β = [Λ1,Λ2]
α

β , q′Iα = qI
γΛγ

α,

m3 = q1
I
αq2

I
β − q2

I
αq1

I
β, m′

αβ = mαγΛγ
β + mγβΛγ

α.

(4.10)

We identify generators with these transformations according to Λα
β ↔ Eαβ , mαβ ↔ Rαβ =

−Rβα and qI
α ↔ Y I

α . Note that to keep AI
α upper triangular, Λ must be an upper

triangular matrix and hence Eαβ only is nonzero for α < β. From the given commutators

of transformations we calculate the commutation relations of the generators and find

[Eαβ , Eγδ ] = δβγEαδ − δαδEγβ, [Rαβ, Rγδ ] = 0,
[
Rαβ, Y I

γ

]
= 0,

[

Y I
α , Y J

β

]

= 2δIJRαβ,
[
Eαβ , Y I

γ

]
= −δαγY I

β , [Eαβ, Rγδ ] = −δαγRβδ + δαδRβγ ,

(4.11)

which is up to a scaling of Rαβ the same as the algebra given in section 3.2. Hence

the dimensionally reduced scalar symmetry transformations are generated by the positive

restricted root subalgebra n of so(d,d + N).

5. Maximal scalar manifolds and dualizations

The concept of a maximal scalar manifold was also discussed in [5]. In D dimensions a

(D − 2)-form can be dualized to a scalar; when this is done, the so-called maximal scalar

manifold is obtained. For the Heterotic supergravities this can be done for D = 4 and

D = 3. In many cases the global symmetry group is enlarged. If a form is dualized to

a scalar the Lagrangian obtains a topological term, which we will ignore, and the dilaton

coupling vector appears with a different sign. In four dimensions the dualization of the

two-form gives a term

−1

2
e−

~A·~Φ(∂χ)2 (5.1)

in the Lagrangian and so we can relate to the extra axion χ a positive root generator S.

Since the vector ~A has no non-trivial summation rules, S will commute with all of them

except for the Cartan generators. Hence only the commutator

[ ~HS] = − ~AS = ~GS (5.2)
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is non-zero. One can compare the diagonalization procedure of [10] to splitting of this

commutator of the so(d,d + N) algebra and hence the diagonalization is also a diagonal-

ization in the Cartan subalgebra of sl(2; R) ⊕ so(d,d + N). The restricted root diagram

now consists of two parts, one part is the same as in section 3.2 with d = 6, the other is

that of SL(2; R)/SO(2) ∼= SO(2, 1)0/SO(2) 6. A coset construction reveals that indeed the

global symmetry group is SL(2; R) × SO(6, 6 + N) (this is also standard, see e.g. [9, 10]).

The dualized action can be further reduced to D = 3 and in D = 3 all vector fields can be

dualized. One obtains the following dilaton coupling vectors

~Bij , − ~Bi = ~Fi, ~Aij , ~Ci,
1

2
~G 1 ≤ i, j ≤ 7;

− ~Ai, 1 ≤ i ≤ 6, − ~Aχ ≡ − ~A7,
(5.3)

where ~Aχ results from the vector ~A in the dilaton coupling of χ in four dimensions and we

have
~Bij = −~Fi + ~Fj , ~Aij = ~Fi + ~Fj − ~G,
~Ci = ~Fi − 1

2
~G, − ~Ai = ~Fi − ~G.

(5.4)

giving rise to the set of simple restricted roots
{

~Bi,i+1, ~C1,− ~A7

}

. We see that the only

difference with the naively expected SO(7, 7 + N) symmetry group, there is an additional

restricted root − ~A7 which only has a nonzero inner product with ~B67. So we could call it
~B78 and then we see that the coset structure is the same as when we would have reduced

over 8 dimensions instead of just 7, and hence the global symmetry group is SO(8, 8 + N),

which is a known result.

6. Conclusions

In this paper we outlined a general method for recognizing the global symmetry groups

which appear after dimensional reduction in extended lower dimensional supergravities.

The method can be broken down into three steps. First one does a circle by circle dimen-

sional reduction as described in section 2. As a second step one identifies the dilatonic

coupling vectors as restricted roots and then draws the associated Dynkin diagram and

counts the multiplicities; this fixes the coset. As a third step one constructs a scalar

coset Lagrangian for the coset found in step two and compares the result to that of the

dimensional reduction.

In this paper we showed that the first and second step uniquely fix the coset. The

complete classification of real forms of simple Lie algebras turns out to be indispensable

and powerful. The third step is to verify that the scalar part of the Lagrangian obtained

from the reduction coincides with a scalar coset Lagrangian of the coset found in the second

step. The third step can be involved but contains no difficulties of principles. The method

has been applied to the dimensional reduction of Heterotic supergravity, where the Lie

algebra of G is a non-split real form.

6The index 0 means the component connected to the identity.
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A. Real forms of Lie algebras: a quick reference

Every semi-simple real Lie algebra g admits a Cartan involution θ which is an involutive

automorphism, such that the bilinear form Bθ(x, y) = −B(x, θy) is positive definite and

B denotes the Cartan-Killing form. The +1(−1) eigenspace is denoted k(p) and we have

the Cartan decomposition g = k ⊕ p and schematically the commutation relations are as

in eq. (3.1). With respect to the inner product Bθ we have (ad x)† = − ad θx and thus a

maximal abelian subalgebra a ⊂ p induces a decomposition of g into eigenspaces w.r.t. a.

This is a restricted root decomposition analogous to the usual root decomposition and we

have the orthogonal decomposition

g = g0 ⊕
⊕

λ∈Σ

gλ, g0 = a ⊕ Zk(a),

[Hxλ] = λ(H)xλ,∀H ∈ a, xλ ∈ gλ,

(A.1)

where Σ ⊂ a∗ denotes the set of restricted roots and Zk(a) is the centralizer of a in k. The

Iwasawa decomposition of the Lie algebra g is

g = k ⊕ a ⊕ n, n =
⊕

λ∈Σ+

gλ. (A.2)

Let t be a maximal torus in Zk(a). Complexifying the Lie algebra to g
�

a Cartan

subalgebra h
�

can be found by extending a
�

with the complexified maximal torus t
�

. The

set of roots is denoted ∆ and the roots are real on a ⊕ it. The action of θ is extended by

linearity and we see that −θ acts as complex conjugation on the real Cartan subalgebra

h = a ⊕ it. The action of θ on a root α is defined by (θα)(h) = α(θh), h ∈ h. A root

α is called real if α|it ≡ 0, and imaginary of α|a = 0 and complex if it is neither real nor

complex. One can find an ordering of the roots in which a is taken before it implying that

θ permutes the simple roots. A Satake diagram is a diagram in which the imaginary simple

roots are colored, while the real and complex are not but the two-element orbits of θ is

denoted by arrows. The projection of a root α to its restriction to a, denoted ᾱ, is easily

seen to be ᾱ = 1
2(α − θα). It is easy to see that ᾱ(it) = 0 and ᾱ ∈ Σ. If λ is a restricted

root, then we define ∆λ = {α ∈ ∆|ᾱ = λ}. The number of roots in this subspace is called

the multiplicity of the restricted root λ: mλ = Card∆λ. Since for restricted roots the root

system can be non-reduced (i.e. if λ ∈ Σ, also 2λ can be in Σ) also m2λ can be non-zero.

A simple restricted root is a positive restricted root which can not be written as the

sum of two positive restricted roots. The set of simple restricted roots {λ1, . . . , λl} contains
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l = dim a elements and gives rise to a restricted root Dynkin diagram. It is a theorem that

if the restricted root system (i.e. the restricted root Dynkin diagram) and the multiplicities

mλi
and m2λi

of the simple restricted roots λi are known, the real form of the simple Lie

algebra is uniquely determined. This enables us to list all of them and since the compact

form always exists, we only list all the non-compact real forms in appendix D. In these

tables the simple roots αi, 1 ≤ i ≤ r = dimR h are related to the simple restricted roots λi

by λi = ᾱi. The table contains information that can be found in [12]. The cosets G/K with

K maximally compact are also put in the table. The Satake diagrams are there to show

which simple roots of the original Dynkin diagram survive the projection to the simple

restricted roots.

B. Some details of the Lie algebra so(d,d + N).

In this section we use the same notation as in appendix A. With the use of the η-matrix

η =






0 �d×d 0

�d×d 0 0

0 0 �N×N




 (B.1)

it is easy to work out the constraint XT η + ηX = 0 for a (2d + N) × (2d + N)-matrix

X. The Cartan involution θ will then be defined by its action in this vector representation

so(d,d + N)V by

θ(X) 7→ −X† = −XT ;X ∈ so(d,d + N)V , (B.2)

and since the vector representation is faithful, this is indeed an automorphism of the Lie

algebra. The Cartan decomposition g = k ⊕ p into the eigenspaces of θ is easily found.

A maximal abelian subspace a of p where θ is − id can be found to be spanned by the

diagonal matrices of the form

A =






a 0 0

0 −a 0

0 0 0




 , (B.3)

where a is d× d diagonal matrix. We can set up an isomorphism between R
d and a by the

isomorphism (which is a vector-space isomorphism) φ : R
d → a defined by

φ : ~a = (a1, . . . , ad) 7→ diag(a1, . . . , ad,−a1, . . . ,−ad, 0, . . . , 0
︸ ︷︷ ︸

N zeros

), (B.4)

Now define the following basis in the dual of R
d

λ̃i : ~a = (a1, . . . , ad) 7→ ai ∈ R. (B.5)

The restricted roots of so(d,d + N) with respect to a can be calculated to be

0, ±λi ≡ ±φ ◦ λ̃i ◦ φ−1, ±(λi − λj) i 6= j, ±(λi + λj) i 6= j, (B.6)
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and denoting the restricted root spaces by gλ for a restricted root λ, we have dimg±λi
= N ,

dimg±(λi±λj) = 1. We can see that Eij ∈ gλi−λj
, Rij ∈ g−λi−λj

and YiI ∈ g−λi
where

Eij =






eij 0 0

0 −eji 0

0 0 0




 , Rij =






0 0 0

βji 0 0

0 0 0




 , YiI =






0 0 0

0 0 γiI

−γiI
T 0 0




 , (B.7)

with

(eij)kl = δikδjl, 1 ≤ i, j, k, l ≤ d, (B.8a)

βij = eij − eji, 1 ≤ i < j ≤ d, (B.8b)

Eij = eij , 1 ≤ i < j ≤ d, (B.8c)

(γiI)kK = δikδIK , 1 ≤ i, k ≤ d, 1 ≤ I,K ≤ N. (B.8d)

Having chosen a sense of positivity and calling Σ+ the set of positive roots, the Iwasawa

decomposition is then

g = k ⊕ a ⊕ n, n =
⊕

λ∈Σ+

gλ. (B.9)

We see that we can chose n to be the span of the union of the sets {Eij : 1 ≤ i < j ≤ d},
{Rij = −Rji : 1 ≤ i, j ≤ d} and {YiI : 1 ≤ i ≤ d, 1 ≤ I ≤ N}. Though some minus signs

may favor the name negative root part, this is just merely a matter of choice. A quick

calculation reveals:

[EijYkK ] = −δikYjK, [YiIYjJ ] = δIJRij ,

[EijEkl] = δjkEil − δilEkj, [EijRkl] = −δikRjl + δilRjk,

[EijYkK ] = −δikYjK, [YiIYjJ ] = δIJRij ,

[YiIRkl] = 0, [RijRkl] = 0.

(B.10)

C. Baker-Campbell-Hausdorff and tricks

Useful formulae are

eXY e−X = Ad(eX)Y = eadXY = Y + [X,Y ] +
1

2
[X, [X,Y ]] + . . . , (C.1a)

(
deX

)
e−X = dX +

1

2
[X,dX] +

1

6
[X, [X,dX]] + . . . , (C.1b)

for explanations see [15]. In deriving the formulas 3.22b-3.22d it is handy if one uses that in

the fundamental representation of the Eij we have (V2)
−1
ij = Γij, so we get d(V2)jkΓkm =

dAjkΓkm = Fjm. The fundamental representation is faithful and hence it holds for all

representations, hence for the Lie algebra. It is handy to note that Eij acts on the YiI as

a linear transformation in the vector space spanned by the Yi - omitting the I-index since

it is in this case a spectator:

ad Eij(Yn) = −δinYj =
∑

m

(ad Eij)nmYm ⇒ (ad Eij)mn = −δimδjn. (C.2)
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The representing matrix of ad Eij squares to zero giving ad Eij ◦ ad Eij(Yn) = 0. One can

easily proceed via

eAijEijYne−AijEij = Ad(eAijEij )(Yn) = ead AijEij (Yn) = (� + ad AijEij)nmYm. (C.3)

The generators Rmn are in the tensor-product representation of this representation under

the action of ad Eij and hence one finds:

V2RmnV2
−1 = ΓmpΓnqRpq. (C.4)

D. Tables

Satake Diagram Restricted Root Diagram Type

α1 α2 αr−1 αr λ1 λ2 λr−1 λr
AI :SL(n; R)/SO(n)

l = r = n − 1

α1 α2 α2l αr λ2 λ4 λ2l−2λ2l
AII :SU∗(2n)/ Sp(n)

l = 2r − l = n − 1

α1 α2 αl

λ1 λ2 λr−1 λr

AIII :SU(p, q)/S(Up × Uq)

l = min(p, q), r = p + q − 1

If 2 ≤ l ≤ r/2

α1 α2

αl λ1 λ2 λr−1 λr If r = 2l − 1

α1 αr λ1
AIV :SU(n, 1)/ SU(n)

l = r + 1 = n

α1 αl λ1 λl
BI : SO(p,q)

SO(p)×SO(q)
; p + q odd

2 ≤ l = min(p, q) ≤ r

α1 λ1
BII :SO(2p, 1)/ SO(2p)

l = 1, r = p

Table 1: continued on next page.
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Satake Diagram Restricted Root Diagram Type

α1 α2 αr−1 αr λ1 λ2 λr−1 λr
CI :Sp(n, R)/U(n)

l = r = n

α1 α2 α2l λ2 λ4 λ2l

CII : Sp(p,q)
S(p)×Sp(q)

l = min(p, q)

If 1 ≤ l ≤ 1
2
(r − l)

α1 α2 α2l λ2 λ4 λ2l If 2 ≤ l = r/2

α1 αl λ1 λ2 λr−1 λr

DI : SO(p,q)
SO(p)×SO(q)

, p + q even

l = min(p, q);

If 2 ≤ l ≤ r − 2

α1 αl−1

αl

αl+1

λ1 λ2 λr−1 λr If r = l + 1.

α1 αl−2

αl−1

αl

λ1 λl−2

λl−1

λl

If r = l.

α1 λ1
DII :SO(2r−1,1)

SO(2r−1)

l = 1

α1 α2 αr−2

αr−1

αr

λ2 λ4 λ2l

DIII :SO∗(2n)
U(n)

l = [n/2]

If r = 2l

α1 α2 αr−2

αr−1

αr

λ2 λ4 λ2l If r = 2l + 1

Table 1: continued on next page.
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Satake Diagram Restricted Root Diagram Type

EI :E6(6)/Sp(4).

l = r = 6

α6 α5 α4 α3 α1

α2

λ2 λ4 λ3 λ1
EII :

E6(2)

SU(6)×SU(2)
.

l = 4

α6 α5 α4 α3 α1

α2

λ2 λ1
EIII :

E6(−14)

SO(10)×U(1)
.

l = 2

α6 α1 λ1 λ6
EIV :

E6(−24)

F4
.

l = 2

EV :E7(7)/SU(8).

l = r = 7

α7 α6 α5 α4 α3 α1

α2

λ1 λ3 λ4 λ6
EVI :

E7(−5)

SO(12)×SU(2)
.

l = 4

α7 α6 α5 α4 α3 α1

α2

λ1 λ6 λ7
EVII :

E7(−25)

E6×U(1)
.

l = 3

EVIII :E8(8)/SO(16).

l = r = 8

α7 α6 α5 α4 α3 α1

α2

α8 λ8 λ7 λ6 λ1
EIX :

E8(−24)

E7×SU(2)
.

l = 4

FI :
F4(4)

Sp(3)×SU(2)
.

r = l = 4

α1 α2 α3 α4 λ1
FII :F4(−20)/SO(9).

l = 1

Table 1: continued on next page.

– 19 –



J
H
E
P
0
2
(
2
0
0
6
)
0
0
4

Satake Diagram Restricted Root Diagram Type

G:
G2(2)

SU(2)×SU(2)
.

l = r = 2

Table 1: Satake diagrams and restricted root diagrams and associated cosets G/K.

Type mλi
m2λi

AI ∀i 1 0

AII ∀i 4 0

AIII ; 2 ≤ l ≤ r
2 i < l 2 0

i = l 2(r − 2l + 1) 1

AIII ; r = 2l − 1 i < l 2 0

i = l 1 0

AIV 2(r − 1) 1

BI i < l 1 0

i = l 2(r − l) + 1 0

BII ∀i 2r − 1 0

CI ∀i 1 0

CII ; 1 ≤ l ≤ 1
2(r − 1) i < 2l 4 0

i = 2l 4(r − 2l) 3

CII ; 2 ≤ l = 1
2r i < 2l 4 0

i = 2l 3 0

DI ; 2 ≤ l ≤ r − 2 i < l 1 0

i = l 2(r − l) 0

DI ; l = r − 1 i < l 1 0

i = l 2 0

DI ; l = r ∀i 1 0

DII ∀i 1 0

DIII ; r = 2l i < 2l 4 0

i = 2l 1 0

DIII ; r = 2l + 1 i < 2l 4 1

EI ∀i 1 0

EII i = 2, 4 1 0

i = 1, 3 2 0

EIII i = 1 8 1

i = 2 6 0

EIV ∀i 8 0

EV ∀i 1 0

EVI i = 1, 3 1 0

i = 2, 4 4 0

Table 2: continued on next page.
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Type mλ m2λ

EVII i = 1, 6 8 0

i = 7 1 0

EVIII ∀i 1 0

EIX i = 1, 6 8 0

i = 7, 8 1 0

FI ∀i 1 0

FII ∀i 8 7

GI ∀i 1 0

Table 2: Multiplicities of the restricted simple roots
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