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1. Introduction

Supergravity theories provide a useful playground for probing string theory physics (see
e.g. [l] and references therein), since they are on the one hand a limit of string theory, but
on the other hand they are classical field theories, admitting a more simpler analysis than
string theory.

The scenario of dimensional reduction provides us with a setting in which an effective
four dimensional theory can be obtained from the ten dimensional supergravity theories,
therefore bringing four dimensional physics in contact with string theory. The scalars in
supergravity theories often parameterize cosets G/K where K is the maximal compact
subgroup of the global symmetry group G. This paper is about the cosets G/K. The
global symmetry group G is related to the U-duality group, which contains the S- and
T-duality of string theories [B .

In maximal supergravities it was shown [f, [f] that in a circle by circle reduction all
scalars appeared in upper-triangular matrices parameterizing the solvable positive root



subalgebra of the global symmetry group. Recognizing the group G is greatly facilitated
by the fact that the Lie algebra in these reductions of maximal supergravities is a split real
form, because then all dilaton coupling vectors can be identified with positive roots and a
Dynkin diagram can be drawn.

For non-maximal supergravities the Lie algebra of the global symmetry group can be
a non-split real form. In this paper we will address the question of how to recognize the
global symmetry group parameterized by the scalars in the case where the Lie algebra is not
a split real form. We find that the identification of roots is replaced by the identification of
restricted roots and that the Dynkin diagram is that of the restricted root system. Together
with the multiplicities of the restricted roots this fixes uniquely the global symmetry group.
Theories where scalars parameterize cosets G/ K where G is a non-split real form have been
studied before, see e.g. [fl, B, but in this work the groups G and K were known beforehand.
We present a technique to find the groups G and K in theories obtained from a dimensional
reduction.

In this paper we will focus on the dimensional reduction of Heterotic supergravity as a
relevant example where non-split real forms arise. The result is known [J—[L1] but in this
paper we present a method which can be used for any supergravity theory and which gives
more insight in how the cosets appear in supergravity theories.

The paper is organized as follows; in section f] we perform the dimensional reduction
of Heterotic supergravity to outline the method of dimensional reduction. In section [ we
show the relation between restricted roots and scalar coset Lagrangians; appendix [ is a
quick reference for Lie algebraic concepts and explains our notational conventions on Lie
algebras. In section [l we analyze the reduction of the higher dimensional symmetries of
Heterotic supergravity and show that they give the same symmetry group as obtained by
the method of section [J. In section [] we discuss the concept of a maximal scalar manifold
and show for Heterotic supergravities how field dualizations give symmetry enhancements.
In section | we draw some conclusions.

2. The dimensional reduction method

The method of dimensional reduction used in this paper is similar to that of [, f]. Actually
a Kaluza-Klein circle by circle reduction is performed; the total number of circles reduced
upon is called d and the dimension of the field theory is D = 10 — d. Since the global
symmetry group manifests itself already on the bosons in the theory and since the Kaluza-
Klein procedure does not break supersymmetry, we will only be concerned with the bosonic
field content. The fields are: the metric g, the Yang-Mills field A, in some representation
of either Eg x Eg or SO(32), the dilaton ®¢ and the Kalb-Ramond gauge potentials B,,,,.
As usual we will restrict ourselves to the abelian subalgebra of the Yang-Mills sector and
therefore only 16 gauge bosons remain, but we will not restrict ourselves to this number
16 and just assume the existence of N abelian gauge bosons.

The action can be written in Einstein frame as
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where e = det(ef;) and F I'= dA’. The field strength H contains the Yang-Mills Chern-
Simons term: H = dB — Zﬁvzl TATANFTL

2.1 Reduction over one circle

To obtain the (10 — d)-dimensional theory, we reduce d times over a circle. In going from
D +1 to D dimensions we write

ds?) . = e®*Pdsh + e 2D=2)¢ (g 4 v, dazt)?, (2.2)

where the number « is given by

_ 1 1 93
““Vep-—nm-2 2% (2:3)

and where z is the coordinate over the circle. All fields are independent of z. The Kaluza-

Klein vector is denoted by V), and reducing over more then one dimension will result in
a set of Kaluza-Klein vectors Vlj. To obtain the action we use the following rules for the
dimensional reduction of the Ricci scalar and an n + 1-form field strength Fj, 1 at every

step in going from D + 1 to D dimensions:
V-gR=+v—g (R - —(agp) —<D Dse p(v7)? > (2.4a)

1 2 —ns 1 2 D—n—1)s
CE] TV F(n+1 STCE] sV 9F e Y+ \/—gﬁF(n)e( )se_ - (2.4b)

This is enough to determine the action in any dimension D. The fields descending from
the ten dimensional metric are: the metric g,,, the dilatons ¢;, the Kaluza-Klein vectors
V;f and the axions, which actually descend from the Kaluza-Klein vectors, A;; and are thus
defined only for ¢ < j. The ten dimensional Kalb-Ramond gauge potential gives rise to a
two-form B,,,, vectors B,,; and scalars B;;. The ten dimensional Yang-Mills field gives rise
to a Yang-Mills vector Aﬁ and scalars Af.

2.2 Reduction over d circles

The circle by circle reduction from 10 to D dimensions can be seen as a dimensional
reduction over a d-torus with the following metric Ansatz:

d
dsty = e27%dsh, + Y PFP(W)?, d+ D =10, (2.5)
=1

where the toroidal coordinates are denoted z* and

@:(¢17---7@d)7 §:2(817827---73d)7 (26&)
O S .
Yi = 19_5 2 i:(oa'--aoa (9_2)8i55i+1,"'78d)5 (26b)
i—1
hi = dZZ‘ + dex“ + Z Aijdzj- (26C)
1<j<n



Equation can be inverted to give

dz' =Ty (hI —V7) (2.7)
where
Lij = Z(—A)p = 6ij — Aij + AimAmj — - . -, (2.8)
p=0

ij

and it should be noted that due to fact that A;; is only defined for ¢ < j the matrix
(A)ij = A;j is upper-triangular and hence the series for I';; is finite. Using a hat for generic
higher dimensional fields and the coordinate split # = (z#, 2*) the Kaluza-Klein Ansatz for
the Yang-Mills gauge potential is

Al(3) = Al (z)da* + Al(z)d2' = AT + Ald2, (2.9)
and hence !
FT = adA! +dAldzt = FT + Fin? (2.10a)
F} = (dA},)T i (2.10b)
FI =dA! — Flve. (2.10c)

For the Kalb-Ramond field we proceed analogously by expanding the two-form field as

B = B+ Bidz' + %Bijdzidzj, (2.11)
and then calculating dB and expressing this in the h-basis. By incorporating the Chern-
Simons terms in a similar fashion one obtains 2

H=H+ H;h' + %Hijhihj, (2.12a)
H =dB — (dB;))T;;V7 + %(dBij)rimrjnvmv" - %(AI — Alr,vihF! (2.12b)
H,, = (AB)Tiy — (dBij)Tim[jn V™ — %(AI — Alr, VIO FE! - %AfLFI : (2.12c¢)
Hypp = (dBij)TimDjn + % (AL pm Fyl — AT FY) (2.12d)

In a analogous way one obtains for the Kaluza-Klein field strengths:

F' = F'+ Fjl/, (2.13a)
Fyj = (dAim)mj, (2.13b)
F'=dV' — (dAjp) T V" = dV* — F; V7. (2.13c)

The dilatons from the reduction ; have the usual field strengths dy;. In writing down the
action it is convenient to put all dilatons, both from the reduction and the ten dimensional

!The wedge symbols A will be omitted where possible.
2Any repeated index, whether in an up-down combination or not, is summed over unless otherwise
specified.



dilaton, into a d41-component vector, and hence all dilaton couplings into d+ 1-component

‘coupling vectors’. The useful definitions are

5:(®07¢17"'7@d):(¢07ﬁ)7 E:(Oaﬁ)7
Bij = —F; + I}, G = (1,9),
Ai=F -G, B; = - F, (2.14)
AZ]:FZ'—FF]—G, A= -G,
CZ = F;Z - %67
of which some summation relations can be deduced
Az] + Ezk = /T]“, A;’j + éjk = /Tika (2.15&)
C; + C_;j = AZ]’ C_;j = g@'j + C_;i, 1< 7, (2.15b)
and some inner product relations
= = 8 P 2
L, 4 - o 4
O = A .G =——_ 2.16b
! D-2 D—2’ ( )
A;’j . C_j =0, éij . gkl = 20,5 — 20; — 25jk + 25jla (2.166)
Aij - By = =203, + 20 — 2055 + 201, (2.16d)
éi . éj = 2(51] (2166)
The D-dimensional Lagrangian can be written as
L=L+ Lo+ L3, (2.17a)
1 1 5.6 1o 5.6
-1 5 2 Bi;-® 2 _B;-®
e L1=R— 0,8 0"% — Z (F;)%ePi —ZZ(F,)e (2.17b)
1<i<j<d i=1
1 1 1 s o
1, _ AP ry2 A;-® 2 Ay 2
e L'g——ﬁe H —ZZe (H") 2. ¢© "% (Hij) (2.17¢)
i=1 1<i<j<d
1 143 N 1 d X 2
e 1Ly = —Ze_EG N (F)? - 3 Z > et (F] ) (2.17d)

3. The algebra from the reduction

3.1 Restricted roots and coset Lagrangians

In this section we will set out the method for identifying the global symmetry group G of the
coset G/ K which is parameterized by the scalars emanating from a dimensional reduction.
A summary of some Lie group theoretical aspects is in appendix [A]. Every semi-simple real
Lie algebra g of a Lie group G can be decomposed in a compact subalgebra £, a maximal
abelian subalgebra a and a nilpotent subalgebra n. This decomposition g = €@ adn is the



Iwasawa decomposition. The orthogonal component of g with respect to the Cartan-Killing
form B(z,y) to £ is denoted p and we have

[ee] C e [ep] Cp, [pp] Ct (3.1)

If K is a maximal compact subgroup of the Lie group G with Lie algebra £, then we can
describe the coset G/K by exp(a @ n)3. The scalar manifolds appearing in supergravities
are in general Riemannian globally symmetric spaces and can be described by cosets of
the form G/K, where K is the maximal compact subgroup of a semi-simple real Lie group
G. These cosets G/K are classified (see e.g. [[J)). The classification says which maximal
compact subalgebras £ can be found in a real semi-simple Lie algebra g and thus which real
forms g a complex Lie algebra g’ =2 g€ can have. With respect to the subalgebra a the Lie

algebra g can be decomposed into restricted root spaces ga:

=00 Por [Haa = AH)z,VH € 0,25 € gy, (3.2)
AeX

where ¥ is the set of (nonzero) restricted roots. This decomposition is analogous to the
root decomposition with respect to the Cartan subalgebra h® of the complexified algebra
g%, but since the real numbers do not form a closed field, a® can not be identified with hC,
but only with a subalgebra of the latter. Hence the name restricted root. The restricted
roots are linear real functionals on a and form a root system [[[J], which can in fact be non-
reduced, i.e. if A € ¥ then the only multiples of A that can also be in ¥ are £\, 2, :I:%)\
(but if A\, 2\ € ¥ then A ¢ ). Another major deviation from the ordinary roots is that the
dimension of the restricted root spaces can exceed 1: my = dim gy > 1. As with ordinary
roots a set of simple restricted roots can be defined and a Dynkin diagram can be drawn.
The number of simple restricted roots is called the rank and it equals the dimension of a.
The multiplicities my, and ma), = dim go), of the simple restricted roots A; together with
the restricted root diagram uniquely fix the real form g of a complex Lie algebra g’ = g©
and hence they fix the coset G/K. In appendix [D| we list for all real non-compact forms
the restricted root diagram, the multiplicities of the simple restricted roots and the Satake
diagram (see appendix [A] for some explanation).

As seen in the previous section, a circle by circle dimensional reduction reveals the
dilaton coupling vectors and these we will identify with the set of positive restricted roots
Y. The multiplicities are easily determined; they are just the number of times a dilaton
coupling with that restricted root occurs. A restricted root Dynkin diagram can readily be
drawn and thus the corresponding coset can be read off from the tables in appendix . It
only needs a proof that the scalars in the Lagrangian really make up a coset Lagrangian.
Therefore in the remainder of this section we will sketch some aspects of coset Lagrangians

(see also [i—[)).

The nilpotent subalgebra n is actually the subalgebra

n= @ o (3.3)

Aext

30f course only the identity component of G/K is parameterized in this way.



Let us introduce a basis {H1, ..., H;} for a, where [ = dima is the rank of the real form
g and let us fix a basis for n by the elements Ei, where for fixed A € ¥ the index I runs
from 1 to my. The coset G/K can than be described by scalars ¢;, called dilatons, and by
scalars AL, called axions, through V = V;V, which is an element of G and where

! my
1
Vi = exp 3 Z ¢;iH;, Vo =exp Z Z ALEL. (3.4)
=1 AeX+ I=1

As we will see later it is sometimes more convenient to parameterize Vs slightly differently.
We arrange the dilatons ¢; in a vector q_g and similar for H;. For the restricted roots we
define X as the vector with components \; = A(H;). From V we can compute the Lie
algebra valued one-form?

41 .o > 5d
dyy~t = Ao H + > eMEE] (3.5)
rext I=1

With every real form g goes a Cartan involution 6 (see appendix [A] but also [[3, [[3])
which is +id on the compact subalgebra . This Cartan involution is used to define a
generalized transpose # in the (identity component of the) real group G as follows: if
O € G and O = expz for some = € g, then O% = exp —f(z). In fact if U € K C G, then
we have U# = U~!, which clarifies the name generalized transpose, since for SO(n) > O
we have O~! = OT. A general scalar coset action is of the form

Se/x = %/ dPzeTr (OIMOM™). (3.6)

where the trace is in some representation and M = V#V. Though M is in a representation
of the group, the trace in the action is actually in a Lie algebra representation and using
that € is an automorphism one can show that the action can be written as:

1
Sajx == / dPze (Te(@VLovy ) + Te(@vy ! 9wy~ H)H))

1 (3.7)
=3 / dPze Tr(0VV'POVY!),
where IP : g — g denotes the projection operator defined by
1
P:xw— 5(]1 —0)x. (3.8)

Hence IP is the identity on the non-compact part and zero on the compact part; it projects
out the compact part. This is quite general for scalar coset Lagrangians; one starts with a
representative V' of the group G parameterized by scalars and writes

dvvl=Q+P, Qet Pep. (3.9)

4In deriving these formula one uses the Baker-Campbell-Hausdorff formulae, which can be found in
appendix E



Under a global G transformation V' — VM, M € G the forms @) and P are invariant.
From the relations B.1] one finds that under a transformation V +— OV, O € K we have

Q— dOO~ ' +0QO0~Y, P— OPO™ !, (3.10)
and thus @ is like a gauge field and P transforms covariant. Hence we can form the
Lagrangian

1
LG’/K = —5 Tr(PuP“), (311)
which is precisely the same is
1 1
-5 Tr(PAVVIPAVV ) = -5 Tr(dVVIPdVV Y, (3.12)

where the latter equality follows from Tr(zy) ~ Trag(adzady) =0, Vo € &,y € p.
Another approach for coset Lagrangian is to start with the Lagrangian

1
Lok = -3 Te(D,VVIDFV VY, (3.13)

where the covariant derivative D contains a gauge field A, taking values in £ and appears
algebraically in the action. The gauge field can be eliminated by its equation of motion
Tr(A,D*VV~1) = 0, which precisely means that D,VV ™! € p. Hence the gauge field

/
G/K"
If the scalar sector in the Lagrangian obtained by dimensional reduction matches the

cancels the compact part in 8MVV*1 giving thus the same Lagrangian: Lg g = L

action B.7 for the appropriate G/ K, then indeed the scalars from the reduction parameterize
the coset G/ K. In the following section we will pursue this programme for the dimensionally
reduced Heterotic supergravity.

3.2 Identifying restricted roots in the Lagrangian

The restricted roots are easily read off from the Lagrangian to be éij, ffij and C,
with multiplicities m(él-j) = m(f_l;]) =1 and m(C;) = N, while m(2C;) = 0. The simple
restricted roots can be identified as follows: A\g_; < éi,i+1 and \g < C_"l and hence the rank
of the coset is d. The dilaton coupling vectors are d+ 1 dimensional so one direction in this
vector space should be redundant. In fact in [[[] it is shown that indeed for d < 6 one can
split of one component of the dilaton. We will take another approach; since it is known that
in four dimensions the global symmetry group can be enlarged to an SL(2; R) x SO(6,6+ N)
we will embed the symmetry group already in the larger group SL(2;R) x SO(d,d + N)
which has rank d 4+ 1. It is easy to see that the inner product in the restricted root space
is proportional to the inner product of the dilaton coupling vectors and thus the restricted
root Dynkin diagram is

)\1 )\2 )\d—l )\d
0O—O0—:---—0=0

and taking into account the multiplicities one can read off that the coset should be of the
type BI or DI. This implies G = SO(d,d + N), since the rank equals [ for both cases and
N =2(r —1)if N +2d is even (type DI) and N =2(r —1) + 1 if N +2d is odd (type BI).



The rest of this section will thus be devoted to prove that indeed the scalar part of
the Lagrangian is an SO(d,d + N)/SO(d) x SO(d + N) coset Lagrangian. Some
aspects of the explicit representations come in handy at this point. With every restricted
root we can identify as many generators as the multiplicity and also we assemble d + 1 non-
compact® Cartan generators H,, 0 < a < d in a vector where the s[(2;R) Cartan generator
is embedded as a linear combination. We therefore make the following identification:

gij < B, 1<, [ﬁEu] = gijEij7 (3.14a)
/Tij < Rij = —Rjj, [ﬁRij] = J‘LjR@j, (3.14b)
Ci e Yy, 1<I <N, [HYi]) = CiYis. (3.14c)

The summation rules suggest that we take

[Eij By ~ 6By — 6aErj, [EijRp] ~ 0 R — 0y Ry,
[EijYik] ~ 0it YK, [YirYjs] ~ MrjRij, (3.15)
[YirRy] =0, [RijRi) = 0,

where M7y is an unknown matrix. Working out the Jacobi equations fixes the propor-
tionality constants but not My s, since this is related to a choice of basis in the subspace
spanned by the Y;7. Using the vector representation with the basis as in appendix [§ and
working out the commutation relations gives M;; = d;7. Hence we have:

(Eij By = 6juEq — 0alyj, [EijRu] = —6iRj + duRjk,
[EijYik] = —0ikYiK, YirY;s] = 6rsRij, (3.16)
YirRp) = 0, [RijRy) = 0.

The embedding in SL(2; R) x SO(d,d+ N) is done by embedding the vector representation
(2d + N) x (2d + N) matrices X (see appendix [B) of the positive restricted root vectors of
s0(d,d+ N) into (2 + 2d + N) x (2 4 2d + N) matrices as follows

X O2x2  Oax(2d+n) ’ (3.17)
02d+N)x2 X

and the Cartan generators are diagonal in this basis where the upper left block is propor-
tional to the third Pauli matrix. We introduce for convenience the vector éo = %\/D —2G

to get
d

Co Cy=20, 0<a,b<d; > (Ca)m(Ca)n = 20mn. (3.18)
a=0
Inspection of the commutation relations and using the explicit vector representation
we see that the Cartan generators H, are diagonal with diagonal values

H, = diag((Hy)o, —(Ha)os (Ho)1, - - s (Ha)a, —(Ha )1, - - ., —(Hg)a, 0, ..., 0),
iag((Ha)o, —(Ha)o, (Ha)1 (Ha)a, —(Ha)1 (Ha)a )

N times (319)
(Hp)a = (—Ca)m, 1 < a,m < d.

®As much as is possible we will omit the subjective non-compact; a Cartan generator in this context is
an element of a.



This implies that in the vector representation the traces are

v(H,Hy) = Z ¢ = 4dap,
(3.20)
TI‘(EZ‘J‘EM) = 26ik6jla

Tr(RijRL,.) = 26im0jn,

and the others are zero. The traces in two different representations of a simple Lie algebra
are proportional and thus for a semi-simple Lie algebra of two simple factors, there are
two proportionality constants since both factors can be weighted differently. In our case
we have fixed C_"O and therefore we have fixed one more constant and this choice gives the
right coset Lagrangian. The coset Lagrangian can be constructed using

Vi = exp (55 : ﬁ) , (3.21a)

Vo = - UngUss - - - Ur4Us3Un2, Uij = exp (A;jEij) no sum, (3.21b)

V3 = exXp Z Binij (3.216)
i<j

Q=exp(w), w= ZAZIYzI’ (3.21d)

V= Vs, (3.21¢)

where A;;, B;; and A;r are the axions and & are the dilatons. Using some tricks as explained
in appendix |[(J one finds:

1 - -
Ayt = 5d@ - H, (3.22a)
Vid,», ! Z Fex®Bip,; (3.22b)

1<J
ViVodVs V3 1Yyt Ze? RV 2 e o (3.22¢)

1<J
ViVoVsdQQ ™ (V1 VaVs) ™ Ze2 G S plyy 4 - Ze2 AT Fl Ry (3.22d)
Using that the action of @ in the vector representation becomes 6(z) = —x? and using

the properties of the traces one then indeed finds that the coset construction based on
the commutation rules of the restricted root generators of so(d,d + N) indeed gives the
coset scalar Lagrangian as it appears in the action .17l Though we embedded the global
symmetry group into SL(2;R) x SO(d,d + N), SL(2;R) is not a part of the symmetry
group if D > 4. This can be seen from the fact that there is no restricted root for SL(2;R).
This will change when the two-form can be dualized to a scalar; this can be done in four
dimensions.

,10,



4. Analysis of dimensionally reduced symmetries

The fields appearing in the Lagrangian do not all have the ‘right’ transformation
properties, e.g. the Kaluza-Klein U(1)-gauge transformation also acts on other fields than
the Kaluza-Klein vectors. The fields are not ‘diagonalized’ with respect to the symmetry
transformations, but a field redefinition can achieve this. An alternative but equivalent
approach is to slightly modify the reduction Ansatz in such a way that the difference
between world and tangent indices is respected. Let us split up the world indices according
to i — (u,«) and the tangent space indices according to @ — (a, i) and if more then one
index of a kind is needed, the order of the alphabet will be used. The modification of the
reduction Ansatz for the metric amounts to

h' — O'o(d2® + Vidat), O'q = 6, + A'a, (4.1)

where A?, are the axions with the distinction between flat and curved index expressed
by using a different kind of letter. The metric Ansatz can now be written in terms of

vielbeins by
- Al Yirg )l «a
S e O 1.2
€o' =€e1¥0",, éu' = 0.

The Ansatz of the fields will now be made in a tangent space basis (see e.g. [, [4]). So
for the Kalb-Ramond field we write:

.1 1
B = 5meeaeb + Baa€®f® + 5 Bas fers, fo=da® + Vdat, (4.3)

and for all other fields similar. Note that we still take A%, to be upper triangular. The
most general diffeomorphism in ten dimensions compatible with the field Ansétze is

bt = —gh(z), 02 = A% +&°(a), (4.4)

where A% is a constant matrix, hence a member of gl(d;R) ~ R + s[(d;R) and from the
discussion in [[J] we know that R-factor will combine with the higher dimensional scaling
symmetry to an internal abelian symmetry. We will not be concerned with this symmetry.
The &£#-transformations give rise to lower dimensional general coordinate transformation,
while the {%-transformations act only on the Kaluza-Klein vectors V};*, which transform un-
der this transformation as U(1)-connections. Any field of the form Cli...upar...aq transforms
as a g-tensor under the s((d; R)-transformations:

0C 1 ppar g = Cm___upﬁa}“aql\ﬁm + other terms with a1 < «;. (4.5)
The Kaluza-Klein vector transforms under sl(d; R) as
SAVY = —A%3V0. (4.6)

The Kalb-Ramond transformations act on the two-form field as 6B = dA®, and the only
transformation consistent with the reduction Ansatz acting on the scalar component of the

two-form 1is
OmBag = 0mBag = Mmag, (4.7)

— 11 —



where mgs is a constant anti-symmetric matrix. Consistent with the reduction Ansatz the
scalars of the Yang-Mills vectors transform under a ten dimensional Yang-Mills transfor-
mation as

Sg AL = 4% = da. (4.8)
where the parameters ¢/ are constants. To make the field strength H =dB - %fl[ F1
invariant the Kalb-Ramond field must also transform and the scalar part of the Kalb-
Ramond field must transform as

84Bap = —qf, Al (4.9)

Calculating commutators of these transformations acting on the scalars we get

[57711757712] =0, [5Q7 5m] =0,

[0A1,0A,] = OAg, [0a,84] = —0y,

[511175(12] = 577137 [5/\7 5m] = 5m’7 (410)
A% = (A1, Aol g = qiA7,

M3 = qad2h — d2adif Mg = MayA7g +mygAT,.
We identify generators with these transformations according to A%g < Eug, mag < Rog =
—Rg, and q. < YI. Note that to keep A!, upper triangular, A must be an upper
triangular matrix and hence E,g only is nonzero for aw < 3. From the given commutators
of transformations we calculate the commutation relations of the generators and find

[Eap, Eqvs] = 0gyEas — 0as By, [Rap, Rys] =0,
[Rap, Y] =0, [YO{ ,YBJ} = 261 R, (4.11)
[Eozﬁy nyl] = _5a'yyﬁla [Eozﬁa R’yé] = _6a7R[36 + 5045Rﬁ’\/5

which is up to a scaling of R,3 the same as the algebra given in section B-J. Hence
the dimensionally reduced scalar symmetry transformations are generated by the positive
restricted root subalgebra n of so(d,d + N).

5. Maximal scalar manifolds and dualizations

The concept of a maximal scalar manifold was also discussed in [ff]. In D dimensions a
(D — 2)-form can be dualized to a scalar; when this is done, the so-called maximal scalar
manifold is obtained. For the Heterotic supergravities this can be done for D = 4 and
D = 3. In many cases the global symmetry group is enlarged. If a form is dualized to
a scalar the Lagrangian obtains a topological term, which we will ignore, and the dilaton
coupling vector appears with a different sign. In four dimensions the dualization of the
two-form gives a term

1 - =
e ¥ oy)? (5.1)

in the Lagrangian and so we can relate to the extra axion x a positive root generator S.
Since the vector A has no non-trivial summation rules, S will commute with all of them
except for the Cartan generators. Hence only the commutator

[HS] = —AS =GS (5.2)
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is non-zero. One can compare the diagonalization procedure of [[[(] to splitting of this
commutator of the so(d,d + N) algebra and hence the diagonalization is also a diagonal-
ization in the Cartan subalgebra of s[(2;R) & so(d,d + N). The restricted root diagram
now consists of two parts, one part is the same as in section B.2 with d = 6, the other is
that of SL(2;R)/SO(2) = SO(2,1)9/SO(2) 6. A coset construction reveals that indeed the
global symmetry group is SL(2;R) x SO(6,6 + N) (this is also standard, see e.g. [§, L0]).
The dualized action can be further reduced to D = 3 and in D = 3 all vector fields can be
dualized. One obtains the following dilaton coupling vectors

T -
—A;, 1<i<6, —A, = - Ay,

where fTX results from the vector A4 in the dilaton coupling of x in four dimensions and we

have

—

i

ﬁ‘, A’Xij: + —C_j,
G —A;,=F —G.

l
l

iJ %
=

I
<
S
<l

(5.4)

!

N[ +

i —

N

giving rise to the set of simple restricted roots {Ei,iJrl, C_"l, —/E}. We see that the only
difference with the naively expected SO(7,7 + N) symmetry group, there is an additional
restricted root —[1} which only has a nonzero inner product with §67. So we could call it
578 and then we see that the coset structure is the same as when we would have reduced
over 8 dimensions instead of just 7, and hence the global symmetry group is SO(8,8 + N),
which is a known result.

6. Conclusions

In this paper we outlined a general method for recognizing the global symmetry groups
which appear after dimensional reduction in extended lower dimensional supergravities.
The method can be broken down into three steps. First one does a circle by circle dimen-
sional reduction as described in section B As a second step one identifies the dilatonic
coupling vectors as restricted roots and then draws the associated Dynkin diagram and
counts the multiplicities; this fixes the coset. As a third step one constructs a scalar
coset Lagrangian for the coset found in step two and compares the result to that of the
dimensional reduction.

In this paper we showed that the first and second step uniquely fix the coset. The
complete classification of real forms of simple Lie algebras turns out to be indispensable
and powerful. The third step is to verify that the scalar part of the Lagrangian obtained
from the reduction coincides with a scalar coset Lagrangian of the coset found in the second
step. The third step can be involved but contains no difficulties of principles. The method
has been applied to the dimensional reduction of Heterotic supergravity, where the Lie

algebra of GG is a non-split real form.

5The index 0 means the component connected to the identity.
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A. Real forms of Lie algebras: a quick reference

Every semi-simple real Lie algebra g admits a Cartan involution 6 which is an involutive
automorphism, such that the bilinear form By(z,y) = —B(z,0y) is positive definite and
B denotes the Cartan-Killing form. The +1(—1) eigenspace is denoted €(p) and we have
the Cartan decomposition g = £ @ p and schematically the commutation relations are as
in eq. (B-1]). With respect to the inner product By we have (adz)’ = —ad #x and thus a
maximal abelian subalgebra a C p induces a decomposition of g into eigenspaces w.r.t. a.
This is a restricted root decomposition analogous to the usual root decomposition and we

have the orthogonal decomposition

g=00®Por g0=0a® Za),
s (A1)

[Hz)] = A(H)z\,YH € a,z) € gy,

where ¥ C a* denotes the set of restricted roots and Zg(a) is the centralizer of a in £. The
Iwasawa decomposition of the Lie algebra g is

g=tPadn, n:@g)\. (A.2)
xext

Let t be a maximal torus in Zg(a). Complexifying the Lie algebra to g* a Cartan
subalgebra h® can be found by extending a® with the complexified maximal torus t©. The
set, of roots is denoted A and the roots are real on a @ it. The action of 6 is extended by
linearity and we see that —6 acts as complex conjugation on the real Cartan subalgebra
h = a @ it. The action of 6 on a root « is defined by (6a)(h) = a(fh), h € h. A root
a is called real if af;¢ = 0, and imaginary of a|, = 0 and complex if it is neither real nor
complex. One can find an ordering of the roots in which a is taken before it implying that
f permutes the simple roots. A Satake diagram is a diagram in which the imaginary simple
roots are colored, while the real and complex are not but the two-element orbits of 6 is
denoted by arrows. The projection of a root « to its restriction to a, denoted @, is easily
seen to be & = %(a — 0a). Tt is easy to see that a(it) = 0 and @ € 3. If X is a restricted
root, then we define Ay = {a € Al@ = A}. The number of roots in this subspace is called
the multiplicity of the restricted root A\: my = CardA ). Since for restricted roots the root
system can be non-reduced (i.e. if A € ¥, also 2) can be in ¥) also mg) can be non-zero.

A simple restricted root is a positive restricted root which can not be written as the

sum of two positive restricted roots. The set of simple restricted roots {A1, ..., A\;} contains
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I = dim a elements and gives rise to a restricted root Dynkin diagram. It is a theorem that
if the restricted root system (i.e. the restricted root Dynkin diagram) and the multiplicities
my, and magy, of the simple restricted roots A; are known, the real form of the simple Lie
algebra is uniquely determined. This enables us to list all of them and since the compact
form always exists, we only list all the non-compact real forms in appendix [J. In these
tables the simple roots «;, 1 < ¢ < r = dimpg h are related to the simple restricted roots \;
by A; = @&;. The table contains information that can be found in [[3]. The cosets G/K with
K maximally compact are also put in the table. The Satake diagrams are there to show
which simple roots of the original Dynkin diagram survive the projection to the simple

restricted roots.

B. Some details of the Lie algebra so(d,d + N).
In this section we use the same notation as in appendix [A]. With the use of the 7-matrix

0 1gxq O
n=|1laxa 0 0 (B.1)
0 0 Inyxn

it is easy to work out the constraint X7n + nX = 0 for a (2d + N) x (2d + N)-matrix
X. The Cartan involution 6 will then be defined by its action in this vector representation
so(d,d + N)y by
0(X)— —X"=-XT: X €so(d,d+ N)y, (B.2)
and since the vector representation is faithful, this is indeed an automorphism of the Lie
algebra. The Cartan decomposition g = € @ p into the eigenspaces of 0 is easily found.
A maximal abelian subspace a of p where 6 is —id can be found to be spanned by the
diagonal matrices of the form
a 00
A=[0—-a0], (B.3)
000

where a is d x d diagonal matrix. We can set up an isomorphism between R and a by the

isomorphism (which is a vector-space isomorphism) ¢ : R? — a defined by

¢:d=(ay,...,aq) — diag(as,...,aq,—a,...,—aq,0,...,0), (B.4)
——

N zeros

Now define the following basis in the dual of R4
S\i:&’:(al,...,ad)HaiER. (B.5)
The restricted roots of so(d,d + N) with respect to a can be calculated to be

0, N =Fpodiod™ !, £(N\—N) i 4, £(\i+ )i #1, (B.6)
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and denoting the restricted root spaces by g, for a restricted root A, we have dimg4), = N,
dimGi(Aii)\j) = 1. We can see that E;j € gx,—»;, Rij € g9-»,—; and Yis € g, where

e; 0 0 0 0 0 0 0 0
EBj=| 0 —ejy 0|, RBy=| B 0 0|, Yy=| 0 0 5 |, (B

0 0 0 0 0 0 vt 00

with

(eij)rt = Oirdji, 1 < i, 5,k 1 < d, (B.8a)
Bij = eij — €ji, 1 <i<j<d, (B.8b)
Eij = ey, 1<i<j<d, (B.8c)
(Vir)kr = Girdrx, 1 <i,k<d, 1 <I,K <N. (B.8d)

Having chosen a sense of positivity and calling 7 the set of positive roots, the Iwasawa
decomposition is then

g=tdadn, n:@g,\. (B.9)

Aext

We see that we can chose n to be the span of the union of the sets {E;; : 1 <1i < j <d},
{Rij =—R;i:1<4,7<d} and {Y;;:1<i<d,1<I<N}. Though some minus signs
may favor the name negative root part, this is just merely a matter of choice. A quick
calculation reveals:

EUYkK] 5 Y J] :5IJRij7

[ [Yir
(EijEw] = 0 Eqy — 5ilEkj, [EijRi] = —0iRji + 6 Ry, (B.10)
(EijYik] = —0irYK, YirY;s] = é6rsRij,
[ zIRkl] - 0 [Rl]Rkl] =0.
C. Baker-Campbell-Hausdorff and tricks
Useful formulae are
1
XYe ™ = Ad(eX)Y =Xy — YV 4 [X, V] + S XY+ (C.1a)
1
(de¥)e ™ =dX + = [X dX] + 6[ (X, dX) + (C.1b)

for explanations see [[[§]. In deriving the formulas it is handy if one uses that in
the fundamental representation of the E;; we have (VQ);jl = T'y;, so we get d(V2)xl'km =
dA;j1lkm = Fjm. The fundamental representation is faithful and hence it holds for all
representations, hence for the Lie algebra. It is handy to note that E;; acts on the Yj; as
a linear transformation in the vector space spanned by the Y; - omitting the [-index since
it is in this case a spectator:

m
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The representing matrix of ad E;; squares to zero giving ad E;; o ad E;j(Y;,) = 0. One can

easily proceed via

etiiFuy, e~ Aty = Ad(e?)(Y;,)

= 455 (Y,) = (1 + ad A Eij)ymYm.  (C.3)

The generators R,,, are in the tensor-product representation of this representation under

the action of ad F;; and hence one finds:

VR Vot = Tinplng Rpg-

(C.4)

Restricted Root Diagram

Type

D. Tables
Satake Diagram
Qaq Qa2 Apr—1 Oy
0O—O0—:...—0—0
aq a2 Qg O
e—O0—e—--..—O0—e@
a1 [6%) (67]
0O—O0—:-..—O0—®
°
°
_O_...._o_.
(65] (6]
O—Q—:+++e—0O
\Oél
/o
O—O—:-..—0
(5] (o738
o= — 9850
Q1 (0%}
O—tte:m 00— @ — - - 0=0
o1
oO—e—--..—eo=0

A1 A2 Ar—1 A
0O—o0—:::—0—0
A2 M\ A21—2 A2
0—0—:--—o0—0
A1 A2 Ar—1 Ar
0O—O0—:---—0=>0
)\1 )\2 )\r—l >\7
0O—O0—:---—0&0

A1

(o]

A1 A
0O—o0—:---—0=>0
A1
(o]

AT:SL(n;R)/SO(n)

l=r=n-1

AII:SU*(2n)/Sp(n)
l=2r—-l=n-1

AIII:SU(p, q)/S(U, x Uy)
l=min(p,q), r=p+q—1

f2<1<r/2

Ifr=20-1

AIV:SU(n,1)/SU(n)

l=r+1=n
.__SOoa) .
BI.SO(p)X”S%(q), p+ q odd

2 <l=min(p,q) <r

BII:SO(2p,1)/ SO(2p)
Il=1,r=p

Table 1: continued on next page.
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Satake Diagram

Restricted Root Diagram

Type

ar Qg Qr—1 Qi
O—O0—+ . —0&=0
a1 (o) Q21
e—0—e—----0O—e—---0=0
a1 a2
e—0—@—----—0—@0&0
[ ]
aq o7} e
o_...._o_._.....\
[ ]
o«
i ai-1/
oO—:.-—0
o0 Q41
o Q-1
i ai—2/
O—---—o\
oo
[ ]
a1
oO—e—-.-..—e@
[ ]
.arfl
[e%} [6%) 067'—2/
e—o—e—---- o\
oar-
oar—l
ar Qo ar—2/
e—o0—eo—. ... o\
oQr

A1 A2 Ar—1 Ar
O—O0—: v+ —0&=0
)\2 )\4 )\2l
O—O0—:--+——O0=0
AQ A4 )\2l
O—O0—: v+ ——0&=0
A1 A2 Ar—1 Ar
O—O0—:--+——O0=0
)\1 )\2 )\r—l >\7
O—O0—:--+——O0=0

oAi-1

A1 A2/
o — —O0
\oAz

A1

o
)\2 )\4 )\2l
O—O0—:+++——0&=0
AQ A4 )\2l
O—O0—:+++—0=0

CI:Sp(n,R)/U(n)
l=r=n

._Sp(»,9)
ClII: S(p) xSp(q)

I =min(p,q)
f1<1<i(r—1)

f2<1=r/2

.__SOq)
DIW%’ p+ q even

I =min(p, q);
fa2<i<r—2

Ifr=1014+1.
Ifr=1.

.80(2r—1,1)
DITI: So(2r—1)
=1

.S0*(2n)
DIII: Tn)
1= [n/2]
Ifr=21
Ifr=20+1

Table 1: continued on next page.
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Satake Diagram Restricted Root Diagram Type
0 (o]
0—o0—0—0—0 0—o0—0—o0—0
l=r=6
O«
| EIl 22
Qg as a4 Q3 a1 A2 A\ A3 A1 "SU(6)xSU(2) *
0—o0—0—0—0 o—o=0—o0
~__ > =4
D o2 Bo(—14)

. 6(—14
ag Qs |OL4 a3 Qa1 A2 A1 EII: SO(10)xU(1) "
oO—e—e—e—o0 o=o0

=2
°

 Eg(—24)

s o M e EIV.—F4 .
oO—e—e—e—o0 o—o I—9

(e]

O—O0—0—0—0—0

® (2

[0%4 Qg (671 Q4 Q3 a1
®e—O0O—0—O0—0—0

® 9

a7 Qg Qj
oO—O0—eo

Q4 3 Q01
e—e—O

(¢]

oO—0—O0—0—0—0—0

[ NeD)

asg [6%4 (675 (0%
O—O0O—O0—eo

4 Q3 (6%
e—e—O

O—O0=0—0

a1 a2 a3 (7]
e—e—0e—O

o

O—O0—O0—0—0—-0

)\1 )\3 )\4 )\6
O—O0=>0——0

Al X A7
O—O0&<0

o

o—0O0—0—0—0—0—0

A8 A7 e M1
O—O0=>0—0

O—O0=>0—0

l=r=7

Er(—s)

EVI:souz)xsu@)'

=4

Ez(—25
EVII: EG7£<U2(1))'
=3

E VIIT:Eys)/ SO(16).

l=r=28
. Eg(—2q)
EIX.7E7XsU(2).
=4
. Fa
FI: Sp(3)xSU(2)
r=1=4

FIIZF4(_20)/ SO(Q)
=1

Table 1: continued on next page.
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Satake Diagram

Restricted Root Diagram Type

oo

oo

. Ga
‘SU@)xSU2)"

l=r=2

G

Table 1: Satake diagrams and restricted root diagrams and associated cosets G/ K.

Type my, may,
AT Vi 1 0
AII Vi 4 0
AIIT; 2<1<} i<l 2 0
i=1 20r—-20+1) 1
AIIT; r =20 — 1 i<l 2 0
i= 1 0
AIV 2(r — 1) 1
BI i<l 1 0
i=1 2(r-0+1 0
BII Vi 2r — 1 0
CI Vi 1 0
CII; 1<1<i(r—1)| i<2l 4 0
i=20  4(r—21) 3
CII;2<l=3r i <2l 4 0
i=2l 3 0
DI;2<I<r—-2 i<l 1 0
i= 2(r—1 0
DI;i=r-1 1<l 1 0
i=1 2 0
DI;i=r Vi 1 0
DII Vi 1 0
DIII; r = 2l i<2l 4 0
i=2l 1 0
DIIT; r =2l +1 i<2l 4 1
EI Vi 1 0
EIT i=24 1 0
i=1,3 2 0
EIIT i= 8 1
i=2 6 0
EIV Vi 8 0
EV Vi 1 0
EVI i=1,3 1 0
i=2,4 4 0

Table 2: continued on next page.
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Type my Moy
EVII 1=1,6 8 0
1= 1 0
EVIII Vi 1 0
EIX 1=1,6 8 0
i=7.28 1 0
FI Vi 1 0
FII Vi 8 7
GI Vi 1 0

Table 2: Multiplicities of the restricted simple roots
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